45 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Pareto Autonomous Local Search

    Get PDF
    This paper presents a study for the dynamic selection of operators in a local search process. The main purpose is to propose a generic autonomous local search method which manages operator selection from a set of available operators, built on neighborhood relations and neighbor selection functions, using the concept of Pareto dominance with respect to quality and diversity. The latter is measured using two different metrics. This control method is implemented using the Comet language in order to be easily introduced in various constraint local search algorithms. Focusing on permutation-based problems, experimental results are provided for the QAP and ATSP to assess the method’s effectiveness

    Constraints and AI Planning

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the authorâ s and shouldnâ t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.Tackling real-world problems often requires to take various types of constraints into account. Such constraint types range from simple numerical comparators to complex resources. This article describes how planning techniques can be integrated with general constraint-solving frameworks, like SAT, IP and CP. In many cases, the complete planning problem can be cast in these frameworks

    A case study of controlling crossover in a selection hyper-heuristic framework using the multidimensional knapsack problem

    Get PDF
    Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain. © 2016 Massachusetts Institute of Technolog

    Game AI is dead. Long live game AI!

    No full text
    10.1109/MIS.2007.10IEEE Intelligent Systems2219-1

    Modellierung der Disjunktion in der constraint-logischen Programmierung

    No full text

    Tactical multi-unit pathplanning with GCLS

    No full text
    Proceedings of the 7th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2011176-18
    corecore